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This paper summarizes and gives new extensions of previous work of the author and
collaborative work of the author with Pierre Noyes. In the present paper we give a
new generalization of the Feynman-Dyson derivation of electromagnetism in a non-
commutative context. In this form, the theory extends to gauge fields and is entirely a
consequence of a choice of the definition of derivatives as commutators and the choice
of relationship between temporal and spatial derivatives. The paper uses diagrammatic
techniques and discusses these issues in the context of discrete physical models.
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1. INTRODUCTION TO NON-COMMUTATIVE WORLDS

Aspects of gauge theory, Hamiltonian mechanics and quantum mechanics
arise naturally in the mathematics of a non-commutative framework for calculus
and differential geometry. This paper consists in four sections including the intro-
duction. The introduction sketches our general results in this domain. The second
section gives a derivation of a generalization of the Feynman-Dyson derivation
of electromagnetism using our non-commutative context and using diagrammatic
techniques. The introduction is based on the paper Kauffman (2004). The second
section is a new approach to issues in Kauffman (2004). The third section dis-
cusses relationships with differential geometry. The fourth section discusses, in
more depth, relationships with gauge theory and differential geometry.

Constructions are performed in a Lie algebra A. One may take A to be a
specific matrix Lie algebra, or abstract Lie algebra. If A is taken to be an abstract
Lie algebra, then it is convenient to use the universal enveloping algebra so that the
Lie product can be expressed as a commutator. In making general constructions
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of operators satisfying certain relations, it is understood that one can always begin
with a free algebra and make a quotient algebra where the relations are satisfied.

On A, a variant of calculus is built by defining derivations as commutators
(or more generally as Lie products). For a fixed N in A one defines

∇N : A −→ A
by the formula

∇NF = [F,N] = FN − NF.

∇N is a derivation satisfying the Leibniz rule.

∇N (FG) = ∇N (F )G + F∇N (G).

There are many motivations for replacing derivatives by commutators. If
f (x) denotes (say) a function of a real variable x, and f̃ (x) = f (x + h) for a fixed
increment h, define the discrete derivative Df by the formula Df = (f̃ − f )/h,

and find that the Leibniz rule is not satisfied. One has the basic formula for the
discrete derivative of a product:

D(fg) = D(f )g + f̃ D(g).

Correct this deviation from the Leibniz rule by introducing a new non-
commutative operator J with the property that

f J = J f̃ .

Define a new discrete derivative in an extended non-commutative algebra by
the formula

∇(f ) = JD(f ).

It follows at once that

∇(fg) = JD(f )g + J f̃ D(g) = JD(f )g + f JD(g) = ∇(f )g + f ∇(g).

Note that

∇(f ) = (J f̃ − Jf )

h
= (f J − Jf )

h
=

[
f,

J

h

]
.

In the extended algebra, discrete derivatives are represented by commutators,
and satisfy the Leibniz rule. One can regard discrete calculus as a subset of non-
commutative calculus based on commutators.

In A there are as many derivations as there are elements of the algebra, and
these derivations behave quite wildly with respect to one another. If one takes the
concept of curvature as the non-commutation of derivations, then A is a highly
curved world indeed. Within A one can build a tame world of derivations that
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mimics the behaviour of flat coordinates in Euclidean space. The description of
the structure of A with respect to these flat coordinates contains many of the
equations and patterns of mathematical physics.

The flat coordinates Xi satisfy the equations below with the Pj chosen to
represent differentiation with respect to Xj .:

[Xi,Xj ] = 0

[Pi, Pj ] = 0

[Xi, Pj ] = δij .

Derivatives are represented by commutators.

∂iF = ∂F/∂Xi = [F,Pi],

∂̂iF = ∂F/∂Pi = [Xi, F ].

Temporal derivative is represented by commutation with a special (Hamilto-
nian) element H of the algebra:

dF/dt = [F,H ].

(For quantum mechanics, take ih̄dA/dt = [A,H ].) These non-commutative
coordinates are the simplest flat set of coordinates for description of temporal
phenomena in a non-commutative world. Note that Hamilton’s equations are a
consequence of these definitions. The very short proof of this fact is given below.

1.1. Hamilton’s Equations

dPi

dt
= [Pi,H ] = −[H,Pi] = − ∂H

∂Xi

dXi

dt
= [Xi,H ] = ∂H

∂Pi

.

These are exactly Hamilton’s equations of motion. The pattern of Hamilton’s
equations is built into the system.
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1.1.1. Discrete Measurement

Consider a time series {X,X′, X′′, . . .} with commuting scalar values. Let

Ẋ = ∇X = JDX = J (X′ − X)

τ

where τ is an elementary time step (If X denotes a times series value at time t , then
X′ denotes the value of the series at time t + τ.). The shift operator J is defined
by the equation XJ = JX′ where this refers to any point in the time series so that
X(n)J = JX(n+1) for any non-negative integer n. Moving J across a variable from
right to left, corresponds to one tick of the clock. This discrete, non-commutative
time derivative satisfies the Leibniz rule.

This derivative ∇ also fits a significant pattern of discrete observation. Con-
sider the act of observing X at a given time and the act of observing (or obtaining)
DX at a given time. Since X and X′ are ingredients in computing (X′ − X)/τ,
the numerical value associated with DX, it is necessary to let the clock tick once,
Thus, if one first observes X and then obtains DX, the result is different (for the
X measurement) if one first obtains DX, and then observes X. In the second case,
one finds the value X′ instead of the value X, due to the tick of the clock.

1. Let ẊX denote the sequence: observe X, then obtain Ẋ.

2. Let XẊ denote the sequence: obtain Ẋ, then observe X.

The commutator [X, Ẋ] expresses the difference between these two orders of
discrete measurement. In the simplest case, where the elements of the time series
are commuting scalars, one has

[X, Ẋ] = XẊ − ẊX = J (X′ − X)2

τ
.

Thus one can interpret the equation

[X, Ẋ] = Jk

(k a constant scalar) as

(X′ − X)2

τ
= k.

This means that the process is a walk with spatial step

� = ±
√

kτ

where k is a constant. In other words, one has the equation

k = �2

τ
.
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This is the diffusion constant for a Brownian walk. A walk with spatial step
size � and time step τ will satisfy the commutator equation above exactly when
the square of the spatial step divided by the time step remains constant. This shows
that the diffusion constant of a Brownian process is a structural property of that
process, independent of considerations of probability and continuum limits.

1.1.2. Heisenberg/Schroedinger Equation

Here is how the Heisenberg form of Schroedinger’s equation fits in this
context. Let J = (1 + H�t/ih̄). Then ∇ψ = [ψ, J/�t], and we calculate

∇ψ = ψ

[
(1 + H�t/ih̄)

�t

]
−

[
(1 + H�t/ih̄)

�t

]
ψ = [ψ,H ]

i h̄
.

This is exactly the form of the Heisenberg equation.

1.1.3. Dynamics and Gauge Theory

One can take the general dynamical equation in the form

dXi

dt
= Gi

where {G1, . . . ,Gd} is a collection of elements of A. Write Gi relative to the flat
coordinates via Gi = Pi − Ai. This is a definition of Ai and ∂F/∂Xi = [F,Pi].
The formalism of gauge theory appears naturally. In particular, if

∇i(F ) = [F,Gi],

then one has the curvature

[∇i ,∇j ]F = [Rij , F ]

and

Rij = ∂iAj − ∂jAi + [Ai,Aj ].

This is the well-known formula for the curvature of a gauge connection.
Aspects of geometry arise naturally in this context, including the Levi-Civita
connection (which is seen as a consequence of the Jacobi identity in an appropriate
non-commutative world).

With Ẋi = Pi − Ai, the commutator [Xi, Ẋj ] takes the form

[Xi, Ẋj ] = [Xi, Pj − Aj ] = [Xi, Pj ] − [Xi,Aj ] = δij − [Xi,Aj ] = gij .

Thus we see that the “gauge field” Aj provides the deviation from the Kro-
necker delta in this commutator. We have [Ẋi, Ẋj ] = Rij , so that these commuta-
tors represent the curvature.
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One can consider the consequences of the commutator [Xi, Ẋj ] = gij , de-
riving that

Ẍr = Gr + FrsẊs + �rst ẊsẊt ,

where Gr is the analogue of a scalar field, Frs is the analogue of a gauge field and
�rst is the Levi-Civita connection associated with gij . This decompositon of the
acceleration is uniquely determined by the given framework. We shall give this
derivation in Section 4.

In regard to thinking about the commutator [Xi, Ẋj ] = gij , It is worth noting
that this equation is a consequence of the right choice of Hamiltonian. By this
I mean, that in a given non-commutative world we choose an H in the algebra
to represent the total (or discrete) time derivative so that Ḟ = [F,H ] for any F.

Suppose we have elements gij such that

[gij , Xk] = 0

and

gij = gji .

We choose

H = (gijPiPj + PiPjgij )

4
.

This is the non-commutative analog of the classical H = (1/2)gijPiPj . In
Section 3, we show that this choice of Hamiltonian implies that [Xi, Ẋj ] = gij .

1.1.4. Feynman—Dyson Derivation

One can use this context to revisit the Feynman-Dyson derivation of elec-
tromagnetism from commutator equations, showing that most of the derivation
is independent of any choice of commutators, but highly dependent upon the
choice of definitions of the derivatives involved. Without any assumptions about
initial commutator equations, but taking the right (in some sense simplest) defi-
nitions of the derivatives one obtains a significant generalization of the result of
Feynman-Dyson.

1.1.5. Electromagnetic Theorem

See Section 2. With the appropriate [see below] definitions of the operators,
and taking

∇2 = ∂2
1 + ∂2

2 + ∂2
3 , B = Ẋ × Ẋ and E = ∂t Ẋ, one has

1. Ẍ = E + Ẋ × B

2. ∇ • B = 0
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3. ∂tB + ∇ × E = B × B

4. ∂tE − ∇ × B = (
∂2
t − ∇2

)
Ẋ

The key to the proof of this Theorem is the definition of the time derivative.
This definition is as follows

∂tF = Ḟ − �iẊi∂i(F ) = Ḟ − �iẊi[F, Ẋi]

for all elements or vectors of elements F. The definition creates a distinction
between space and time in the non-commutative world. In the non-commutative
world, we are give the process derivative Ḟ = [F,H ], conceived originally as a
discrete difference ratio. The elements of the non-commutative world are subject
to this temporal variation, but they are not functions of a “time variable” t. The
concept of a time variable is a classical notion that we bring partially into the
non-commutative context by defining the notion of a partial derivative ∂tF.

A calculation (done diagrammatically in Fig. 3) reveals that

Ẍ = ∂t Ẋ + Ẋ × (Ẋ × Ẋ).

This suggests taking E = ∂t Ẋ as the electric field, and B = Ẋ × Ẋ as the
magnetic field so that the Lorentz force law

Ẍ = E + Ẋ × B

is satisfied.
This result is applied to produce many discrete models of the Theorem. These

models show that, just as the commutator [X, Ẋ] = Jk describes Brownian motion
(constant step size processes) in one dimension, a generalization of electromag-
netism describes the interaction of triples of time series in three dimensions.

Remark 1. While there is a large literature on non-commutative geometry, ema-
nating from the idea of replacing a space by its ring of functions, work discussed
herein is not written in that tradition. Non-commutative geometry does occur
here, in the sense of geometry occuring in the context of non-commutative alge-
bra. Derivations are represented by commutators. There are relationships between
the present work and the traditional non-commutative geometry, but that is a sub-
ject for further exploration. In no way is this paper intended to be an introduction
to that subject. The present summary is based on (Kauffman, 1991; Kauffman and
Noyes, 1996a,b; Kauffman et al., in preparation; Kauffman, 1996, 1998a,b, 1999,
2003, 2004) and the references cited therein.

The following references in relation to non-commutative calculus are useful in
comparing with the present approach (Connes, 1990; Dimakis and Müller-Hoissen,
1992; Forgy, 2002; Müller-Hoissen, 1998). Much of the present work is the fruit
of a long series of discussions with Pierre Noyes, influenced at critical points
by Tom Etter and Keith Bowden. The paper Montesinos and Perez-Lorenzana
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(1999) also works with minimal coupling for the Feynman-Dyson derivation. The
first remark about the minimal coupling occurs in the original paper by Dyson
(1990), in the context of Poisson brackets. The paper Hughes (1992) is worth
reading as a companion to Dyson. It is the purpose of this summary to indicate
how non-commutative calculus can be used in foundations.

2 GENERALIZED FEYNMAN DYSON DERIVATION

In this section we assume that specific time-varying coordinate elements
X1, X2, X3 of the algebra A are given. We do not assume any commutation
relations about X1, X2, X3.

In this section we no longer avail ourselves of the commutation relations that
are in back of the original Feynman-Dyson derivation. We do take the definitions
of the derivations from that previous context. Surprisingly, the result is very similar
to the one of Feynman and Dyson, as we shall see.

Here A × B is the non-commutative vector cross product:

(A × B)k = �3
i,j=1εijkAiBj .

(We will drop this summation sign for vector cross products from now on.) Then,
with B = Ẋ × Ẋ, we have

Bk = εijkẊiẊj =
(

1

2

)
εijk[Ẋi, Ẋj ].

The epsilon tensor εijk is defined for the indices {i, j, k} ranging from 1 to 3,

and is equal to 0 if there is a repeated index and is ortherwise equal to the sign of
the permutation of 123 given by ijk. We represent dot products and cross products
in diagrammatic tensor notation as indicated in Figs. 1 and 2. In Fig. 1 we indicate
the epsilon tensor by a trivalent vertex. The indices of the tensor correspond to
labels for the three edges that impinge on the vertex. The diagram is drawn in
the plane, and is well-defined since the epsilon tensor is invariant under cyclic
permutation of its indices.

We will define the fields E and B by the equations

B = Ẋ × Ẋ and E = ∂t Ẋ.

We will see that E and B obey a generalization of the Maxwell Equations,
and that this generalization describes specific discrete models. The reader should
note that this means that a significant part of the form of electromagnetism is the
consequence of choosing three coordinates of space, and the definitions of spatial
and temporal derivatives with respect to them. The background process that is
being described is otherwise aribitrary, and yet appears to obey physical laws once
these choices are made.
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Fig. 1. Epsilon identity.

In this section we will use diagrammatic matrix methods to carry out the
mathematics. In general, in a diagram for matrix or tensor composition, we sum
over all indices labeling any edge in the diagram that has no free ends. Thus matrix
multiplication corresponds to the connecting of edges between diagrams, and to
the summation over common indices. With this interpretation of compositions,
view the first identity in Fig. 1. This is a fundmental identity about the epsilon,
and corresponds to the following lemma.

Lemma 1. (View Fig. 1) Let εijk be the epsilon tensor taking values 0, 1 and
−1 as follows: When ijk is a permuation of 123, then εijk is equal to the sign of

Fig. 2. Defining Derivatives.
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the permutation. When ijk contains a repetition from {1, 2, 3}, then the value of
epsilon is zero. Then ε satisfies the following identity in terms of the Kronecker
delta.

�i εabiεcdi = −δadδbc + δacδbd .

The proof of this identity is left to the reader. The identity itself will be
referred to as the epsilon identity. The epsilon identity is a key structure in the
work of this section, and indeed in all formulas involving the vector cross product.

The reader should compare the formula in this Lemma with the diagrams in
Fig. 1. The first two diagram are two versions of the Lemma. In the third diagram
the labels are capitalized and refer to vectors A,B and C. We then see that the
epsilon identity becomes the formula

A × (B × C) = (A • C)B − (A • B)C

for vectors in three-dimensional space (with commuting coordinates, and a gen-
eralization of this identity to our non-commutative context. Refer to Fig. 2 for
the diagrammatic definitions of dot and cross product of vectors. We take these
definitions (with implicit order of multiplication) in the non-commutative context.

2.1. Remarks on the Derivatives

1. Since we do not assume that [Xi, Ẋj ] = δij , nor do we assume [Xi,Xj ] =
0, it will not follow that E and B commute with the Xi.

2. We define

∂i(F ) = [F, Ẋi],

and the reader should note that, these spatial derivations are no longer flat
in the sense of section 1 (nor were they in the original Feynman-Dyson
derivation). See Fig. 2 for the diagrammatic version of this definition.

3. We define ∂t = ∂/∂t by the equation

∂tF = Ḟ − �iẊi∂i(F ) = Ḟ − �iẊi[F, Ẋi]

for all elements or vectors of elements F. We take this equation as the
global definition of the temporal partial derivative, even for elements that
are not commuting with the Xi. This notion of temporal partial derivative
∂t is a least relation that we can write to describe the temporal relationship
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of an arbitrary non-commutative vector F and the non-commutative coor-
dinate vector X. See Fig. 2 for the diagrammatic version of this definition.

4. In defining

∂tF = Ḟ − �iẊi∂i(F ),

we are using the definition itself to obtain a notion of the variation of F

with respect to time. The definition itself creates a distinction between
space and time in the non-commutative world.

5. The reader will have no difficulty verifying the following formula:

∂t (FG) = ∂t (F )G + F∂t (G) + �i∂i(F )∂i(G).

This formula shows that ∂t does not satisfy the Leibniz rule in our
non-commutative context. This is true for the original Feynman-Dyson
context, and for our generalization of it. All derivations in this theory
that are defined directly as commutators do satisfy the Leibniz rule. Thus
∂t is an operator in our theory that does not have a representation as a
commutator.

6. We define divergence and curl by the equations

∇ • B = �3
i=1∂i(Bi)

and

(∇ × E)k = εijk∂i(Ej ).

See Figs. 2 and 4 for the diagrammatic versions of curl and diver-
gence.

Now view Fig. 3. We see from this Figure that it follows directly from the
definition of the time derivatives (as discussed above) that

Ẍ = ∂t Ẋ + Ẋ × (Ẋ × Ẋ).

This is our motivation for defining

E = ∂t Ẋ

and

B = Ẋ × Ẋ.

With these definitions in place we have

Ẍ = E + Ẋ × B,

giving an analog of the Lorentz force law for this theory.
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Fig 3. The formula for acceleration.

Just for the record, look at the following algebraic calculation for this deriva-
tive:

Ḟ = ∂tF + �iẊi[F, Ẋi]

= ∂tF + �i(ẊiF Ẋi − ẊiẊiF )

= ∂tF + �i(ẊiF Ẋi − ẊiFiẊ) + ẊiFiẊ − ẊiẊiF

Hence

Ḟ = ∂tF + Ẋ × F + (Ẋ • F )Ẋ − (Ẋ • Ẋ)F

(using the epsilon identity). Thus we have

Ẍ = ∂t Ẋ + Ẋ × (Ẋ × Ẋ) + (Ẋ • Ẋ)Ẋ − (Ẋ • Ẋ)Ẋ,

whence

Ẍ = ∂t Ẋ + Ẋ × (Ẋ × Ẋ).

In Fig. 4, we give the derivation that B has zero divergence.



Glafka-2004: Non-Commutative Worlds 1455

Fig 4. Divergence of B.

Figures 5 and 6 compute derivatives of B and the Curl of E, culminating in
the formula

∂tB + ∇ × E = B × B.

In classical electromagnetism, there is no term B × B. This term is an artifact
of our non-commutative context. In discrete models, as we shall see at the end of
this section, there is no escaping the effects of this term.

Finally, Fig. 7 gives the diagrammatic proof that

Fig 5. Computing Ḃ.
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Fig 6. Curl of E.

∂tE − ∇ × B = (∂2
t − ∇2)Ẋ.

This completes the proof of the Theorem below.

Electromagnetic Theorem. With the above definitions of the operators, and taking

∇2 = ∂2
1 + ∂2

2 + ∂2
3 , B = Ẋ × Ẋ and E = ∂t Ẋ we have

1. Ẍ = E + Ẋ × B

2. ∇ • B = 0
3. ∂tB + ∇ × E = B × B

4. ∂tE − ∇ × B = (∂2
t − ∇2)Ẋ

Remark 2. Note that this Theorem is a non-trivial generalization of the Feynman-
Dyson derivation of electromagnetic equations. In the Feynman-Dyson case, one
assumes that the commutation relations

[Xi,Xj ] = 0

and

[Xi, Ẋj ] = δij

are given, and that the principle of commutativity is assumed, so that if A and
B commute with the Xi then A and B commute with each other. One then can
interpret ∂i as a standard derivative with ∂i(Xj ) = δij . Furthermore, one can verify
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Fig 7. Curl of B.

that Ej and Bj both commute with the Xi. From this it follows that ∂t (E) and
∂t (B) have standard intepretations and that B × B = 0. The above formulation of
the Theorem adds the description of E as ∂t (Ẋ), a non-standard use of ∂t in the
original context of Feyman-Dyson, where ∂t would only be defined for those A that
commute with Xi. In the same vein, the last formula ∂tE − ∇ × B = (∂2

t − ∇2)Ẋ
gives a way to express the remaining Maxwell Equation in the Feynman-Dyson
context.

Remark 3. Note the role played by the epsilon tensor εijk throughout the con-
struction of generalized electromagnetism in this section. The epsilon tensor is the
structure constant for the Lie algebra of the rotation group SO(3). If we replace
the epsilon tensor by a structure constant fijk for a Lie algebra Gof dimension d

such that the tensor is invariant under cyclic permutation (fijk = fkij ), then most
of the work in this section will go over to that context. We would then have d

operator/variables X1, . . . Xd and a generalized cross product defined on vectors
of length d by the equation

(A × B)k = fijkAiBj .
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The Jacobi identity for the Lie algebra G implies that this cross product will
satisfy

A × (B × C) = (A × B) × C + [B × (A] × C)

where

([B × (A] × C)r = fklrfijkAiBkCj .

This extension of the Jacobi identity holds as well for the case of non-
commutative cross product defined by the epsilon tensor. It is therefore of interest
to explore the structure of generalized non-commutative electromagnetism over
other Lie algebras (in the above sense). This will be the subject of another paper.

2.2. Discrete Thoughts

In the hypotheses of the Electromagnetic Theorem, we are free to take any
non-commutative world, and the Electromagnetic Theorem will satisfied in that
world. For example, we can take each Xi to be an arbitary time series of real or
complex numbers, or bitstrings of zeroes and ones. The global time derivative is
defined by

Ḟ = J (F ′ − F ) = [F, J ],

where FJ = JF ′. This is the non-commutative discrete context discussed in
sections 1. We will write

Ḟ = J�(F )

where �(F ) denotes the classical discrete derivative

�(F ) = F ′ − F.

With this interpretation X is a vector with three real or complex coordinates
at each time, and

B = Ẋ × Ẋ = J 2�(X′) × �(X)

while

E = Ẍ − Ẋ × (Ẋ × Ẋ) = J 2�2(X) − J 3�(X′′) × (�(X′) × �(X)).

Note how the non-commutative vector cross products are composed through
time shifts in this context of temporal sequences of scalars. The advantage of
the generalization now becomes apparent. We can create very simple models of
generalized electromagnetism with only the simplest of discrete materials. In the
case of the model in terms of triples of time series, the generalized electromagnetic
theory is a theory of measurements of the time series whose key quantities are

�(X′) × �(X)
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and

�(X′′) × (�(X′) × �(X)).

It is worth noting the forms of the basic derivations in this model. We have,
assuming that F is a commuting scalar (or vector of scalars) and taking �i =
X′

i − Xi,

∂i(F ) = [F, Ẋi] = [F, J�i] = FJ�i − J�iF = J (F ′�i − �iF ) = Ḟ�i

and for the temporal derivative we have

∂tF = J [1 − J�′ • �]�(F )

where � = (�1,�2,�3).

3. DIFFERENTIAL GEOMETRY AND GAUGE THEORY
IN A NON-COMMUTATIVE WORLD

We take the dynamical law in the form

dXi

dt
= Ẋi = Pi − Ai = Gi .

This gives rise to new commutation relations

[Xi, Ẋj ] = [Xi, Pj ] − [Xi,Aj ] = δij − ∂Aj

∂Pi

= gij

where this equation defines gij , and

[Ẋi, Ẋj ] = Rij = ∂iAj − ∂jAi + [Ai,Aj ].

We define the “covariant derivative”

∇iF = [F,Pi − Ai] = ∂i(F ) − [F,Ai] = [F, Ẋi],

while we can still write

∂̂iF = [Xi, F ].

It is natural to think that gij is analogous to a metric. This analogy is strongest
if we assume that [Xi, gjk] = 0. By assuming that the spatial coordinates comm-
mute with the metric coefficients we have that

[Ẋi, gjk] + [Xi, ˙gjk] = 0.

Hence

∇igjk = ∂̂i ˙gjk.
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Here, we shall assume from now on that

[Xi, gjk] = 0.

A stream of consequences then follows by differentiating both sides of the
equation

gij = [Xi, Ẋj ].

We will detail these consequences in Section 4. For now, we show how the
form of the Levi-Civita connection appears naturally.
In the following we shall use D as an abbreviation for d/dt.

The Levi-Civita connection

�ijk =
(

1

2

)
(∇igjk + ∇j gik − ∇kgij )

associated with the gij comes up almost at once from the differentiation process
described above. To see how this happens, view the following calculation where

∂̂i ∂̂jF = [Xi, [Xj, F ]].

We apply the operator ∂̂i ∂̂j to the second time derivative of Xk.

Lemma 2. Let �ijk = (1/2)(∇igjk + ∇j gik − ∇kgij ). Then

�ijk = (1/2)∂̂i ∂̂j Ẍk.

Proof: Note that by the Leibniz rule

D([A,B]) = [Ȧ, B] + [A, Ḃ],

we have

˙gjk = [Ẋj , Ẋk] + [Xj, Ẍk].

Therefore

∂̂i ∂̂j Ẍk = [Xi, [Xj, Ẍk]]

= [Xi, ˙gjk − [Ẋj , Ẋk]]

= [Xi, ˙gjk] − [Xi, [Ẋj , Ẋk]]

= [Xi, ˙gjk] + [Ẋk, [Xi, Ẋj ]] + [Ẋj , [Ẋk, Xi]]

= −[Ẋi, gjk] + [Ẋk, [Xi, Ẋj ]] + [Ẋj , [Ẋk, Xi]]
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= ∇igjk − ∇kgij + ∇j gik

= 2�kij .

This completes the proof. �

It is remarkable that the form of the Levi-Civita connection comes up directly
from this non-commutative calculus without any apriori geometric interpretation.

The upshot of this derivation is that it confirms our interpretation of

gij = [Xi, Ẋj ] = [Xi, Pj ] − [Xi,Aj ] = δij − ∂Aj

∂Pi

as an abstract form of metric (in the absence of any actual notion of distance in
the non-commutative world). This calls for a re-evaluation and reconstruction of
differential geometry based on non-commutativity and the Jacobi identity. This is
differential geometry where the fundamental concept is no longer parallel transla-
tion, but rather a non-commutative version of a physical trajectory. This approach
will be the subject of a separate paper.

At this stage we face the mystery of the appearance of the Levi-Civita connec-
tion. There is a way to see that the appearance of this connection is not an accident,
but rather quite natural. We are thinking about the commutator [Xi, Ẋj ] = gij . It
is worth noting that this equation is a consequence of the right choice of Hamilto-
nian. By this I mean, that in a given non-commutative world we choose an H in
the algebra to represent the total (or discrete) time derivative so that Ḟ = [F,H ]
for any F. Suppose we have elements gij such that

[gij , Xk] = 0

and

gij = gji .

We choose

H = (gijPiPj + PiPjgij )

4
.

This is the non-commutative analog of the classical H = (1/2)gijPiPj . In
the non-commutative case, there is no reason for the metric coefficients and
the momenta Pi to commute since the metric coefficients are dependent on the
positions Xj .

We now show that this choice of Hamiltonian implies that [Xi, Ẋj ] = gij .

Once we see this consequence of the choice of the Hamiltonian, the appearance
of the Levi-Civita connection is quite natural, since the classical case of a particle
moving in generalized coordinates under Hamilton’s equations implies geodesic
motion in the Levi-Civita connection.
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Lemma 3. Let gij be given such that [gij , Xk] = 0 and gij = gji . Define

H = (gijPiPj + PiPjgij )

4
(where we sum over the repeated indices) and

Ḟ = [F,H ].

Then

[Xi, Ẋj ] = gij .

Proof: Consider

[Xk, gijPiPj ] = gij [Xk, PiPj ]

= gij ([Xk, Pi]Pj + Pi[Xk, Pj ])

= gij (δkiPj + Piδkj ) = gkjPj + gikPi = 2gkjPj .

Then

[Xr, Ẋk] = [Xr, [Xk,H ]] =
[
Xr,

[
Xk,

(gijPiPj + PiPjgij )

4

]]

=
[
Xr,

[
Xk,

(gijPiPj )

4

]]
+ [Xr, [Xk, (PiPjgij )/4]]

= 2[Xr, 2gkjPj/4] = [Xr, gkjPj ] = gkj [Xr, Pj ] = gkj δrj

= gkr = grk.

This completes the proof. �

It is natural to extend the present analysis to a discussion of general relativity.
A joint paper on general relativity from this non-commutative standpoint is in
preparation (joint work with Tony Deakin and Clive Kilmister).

4. CONSEQUENCES OF THE METRIC

In this section we shall follow the formalism of the metric commutator
equation

[Xi, Ẋj ] = gij

very far in a semi-classical context. That is, we shall set up a non-commutative
world, and we shall make assumptions about the non-commutativity that bring
the operators into close analogy with variables in standard calculus. In particular
we shall regard an element F of the Lie algebra to be a “function of the Xi ” if F
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commutes with the Xi, and we shall assume that if F and G commute with the Xi,

then F and G commute with each other. We call this the principle of commutativity.
With these background assumptions, it is possible to get a very sharp result about
the behaviour of the theory. In particular, the results of this section sharpen the
work in Tanimura (1992), where special orderings and averages of orderings of
the operators were needed to obtain analogous results.

We assume that

[Xi, Ẋj ] = gij

[Xi,Xj ] = 0

[Xi, gjk] = 0

[gij , gkl] = 0.

We assume that there exists a gij with

gijgjk = δi
k = gijg

jk = δk
i .

We also assume that if

[A,Xi] = 0

and

[B,Xi] = 0

for all i, then

[A,B] = 0

for all expressions A and B in the algebra under consideration. To say that
[A,Xi] = 0 is to say the analogue of the statement that A is a function only
of the variables Xi and not a function of the Ẋj . This is a stong assumption about
the algebraic structure, and it will not be taken when we look at strictly discrete
models. It is, however, exactly the assumption that brings the non-commutative
algebra closest to the classical case of functions of positions and momenta.

The main result of this section will be a proof that

Ẍr = Gr + FrsẊs + �rst ẊsẊt ,

and that this decompositon of the acceleration is uniquely determined by the given
framework. Since

F rs = [Ẋr , Ẋs] = grigsjFij ,
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we can regard this result as a description of the motion of the non-commutative
particle influenced by a scalar field Gr, a qauge field F rs, and geodesic motion
with respect to the Levi-Civita connection corresponding to gij . Let us begin.

Note that, as before, we have that gij = gji by taking the time derivative of
the equation [Xi,Xj ] = 0.

Note also that the Einstein summation convention (summing over repeated
indices) is in effect when we write equations, unless otherwise specified.

As before, we define

∂iF = [F, Ẋi]

and

∂̂iF = [Xi, F ].

We also make the definitions

Ẋi = gij Ẋj

and

∂iF = [F, Ẋi].

Note that we do not assume the existence of a variable Xj whose time
derivative is Ẋj . Note that we have

Ẋk = gkiẊi .

Note that it follows at once that

∂̂i ˙gjk = ∂igjk

by differentiating the equation [Xi, gjk] = 0.

We assume the following postulate about the time derivative of an element
F with [Xi, F ] = 0 for all k :

Ḟ = (∂iF )Ẋi .

This is in accord with the concept that F is a function of the variables Xi.

Note that in one interpretation of this formalism, one of the variables Xi could be
itself a time variable. In the next section, we shall return to three dimensions of
space and one dimension of time, with a separate notation for the time variable.
Here there is no restriction on the number of independent variables Xi.

We have the following Lemma.

Lemma 4.

1. [Xi, Ẋj ] = δ
j

i .

2. ∂r (gij )gjk + gij ∂r (gjk) = 0.
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3. [Xr, ∂igjk] = 0.

Proof:

[Xi, Ẋj ] = [Xi, g
jkẊk] = [Xi, g

jk]Ẋk + gjk[Xi, Ẋk]

= gjk[Xi, Ẋk] = gjkgik = gjkgki = δ
j

i .

The second part of the proposition is an application of the Leibniz rule:

0 = ∂r

(
δi
k

) = ∂r (gijgjk) = ∂r (gij )gjk + gij ∂r (gjk).

Finally,

[Xr, ∂igjk] = [Xr, [gjk, Ẋi]] = −[Ẋi, [Xr, gjk]] − [gjk, [Ẋi, Xr ]]

= −[Ẋi, 0] + [gjk, gir ] = 0 + 0 = 0.

This completes the proof of the Lemma. �

It follows from this lemma that ∂i can be regarded as ∂/∂Xi.

We have seen that it is natural to consider the commutator of the velocities
Rij = [Ẋi, Ẋj ] as a field or curvature. For the present analysis, we would prefer
the field to commute with all the variables Xk in order to identify it as a “function of
the variables Xk.” We shall find, by a computation, that Rij does not so commute,
but that a compensating factor arises naturally. The result is as follows.

Proposition 1. Let Frs = [Ẋr , Ẋs] + (∂rgks − ∂sgkr )Xk and F rs = [Ẋr , Ẋs].
Then

1. Frs and F rs commute with the variables Xk.

2. F rs = grigsjFij .

Proof: of Proposition. We begin by computing the commutator of Xi and Rrs =
[Ẋr , Ẋs] by using the Jacobi identity.

[Xi, [Ẋr , Ẋs]] = −[Ẋs, [Xi, Ẋr ]] − [Ẋr , [Ẋs, Xi]] = ∂sgir − ∂rgis .

Note also that

[Xi, ∂rgks] = [Xi, [gks, Ẋr ]] = −[Ẋr , [Xi, gks]] − [gks, [Ẋr , Xi]]

= −[Ẋr , [Xi, gks]] + [gks, gir ] = 0.

Hence

[Xi, (∂rgks − ∂sgkr )Xk] = ∂rgis − ∂sgir .
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Therefore

[Xi, Frs] = [Xi, [Ẋr , Ẋs] + (∂rgks − ∂sgkr )Xk] = 0.

This, and an a similar computation that we leave for the reader, proves the
first part of the proposition. We prove the second part by direct computation: Note
the following identity:

[AB,CD] = [A,C]BD + A[B,C]D + C[A,D]B + CA[B,D].

Using this identity we find

[Ẋr , Ẋs] = [griẊi , g
sj Ẋj ]

= [gri, gsj ]ẊiẊj + gri[Ẋi, g
sj ]Ẋj + gsj [gri, Ẋj ]Ẋi + gsjgri[Ẋi, Ẋj ]

= −gri∂i(g
sj )Ẋj + gsj ∂j (gri)Ẋi + gsjgri[Ẋi, Ẋj ]

= −gri∂i(g
sj )gjlẊl + gsj ∂j (gri)gilẊl + gsjgri[Ẋi, Ẋj ]

= grigsj ∂i(gjl)Ẋl − gsjgri∂j (gil)Ẋl + gsjgri[Ẋi, Ẋj ]

= grigsj (∂i(gjl)Ẋl − ∂j (gil)Ẋl + [Ẋi, Ẋj ])

= grigsjFij .

This completes the proof of the proposition. �

We now consider the full form of the acceleration terms Ẍk. We have already
shown that

∂̂i ∂̂j Ẍk = ∂igjk + ∂jgik − ∂kgij .

Letting

�kij = (1/2)(∂igjk + ∂jgik − ∂kgij ),

we define Gr by the formula

Ẍr = Gr + FrsẊs + �rst ẊsẊt .

Proposition 2. Let �rst and Gr be defined as above. Then both �rst and Gr

commute with the variables Xi.

Proof: Since we know that [Xl, ∂igjk] = 0, it follows at once that [Xl, �rst ] = 0.

It remains to examine the commutator [Xl,Gr ]. We have

[Xl,Gr ] = [Xl, Ẍr − FrsẊs − �rst ẊsẊt ]

= [Xl, Ẍr ] − [Xl, FrsẊs] − [Xl, �rst ẊsẊt ]

= [Xl, Ẍr ] − Frs[Xl, Ẋs] − �rst [Xl, ẊsẊt ]
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(since Frs and �rst commute with Xl). Note that

[Xl, Ẋs] = δs
l

and that

[Xl, ẊsẊt ] = [Xl, Ẋs]Ẋt + Ẋs[Xl, Ẋt ]

= δs
l Ẋ

t + Ẋsδt
l .

Thus

[Xl,Gr ] = [Xl, Ẍr ] − Frsδ
s
l − �rst (δ

s
l Ẋ

t + Ẋsδt
l )

= [Xl, Ẍr ] − Frl − �rlt Ẋt − �rslẊs .

It is easy to see that �rlt Ẋt = �rslẊs . Hence

[Xl,Gr ] = [Xl, Ẍr ] − Frl − 2�rlt Ẋt .

On the other hand,

[Xl, Ẋr ] = glr .

Hence

[Xl, Ẍr ] = ġlr − [Ẋl, Ẋr ].

Therefore

[Xl,Gr ] = ġlr − [Ẋl, Ẋr ] − Frl − 2�rlt Ẋt

= ġlr − (∂rgkl − ∂lgkr )Ẋk − 2�rlt Ẋt .

(since Frl = [Ẋr , Ẋl] + (∂rgkl − ∂lgkr )Ẋk) Hence

[Xl,Gr ] = ġlr − (∂rgtl − ∂lgtr )Ẋt − (∂lgtr + ∂tglr − ∂rglt )Ẋt

= ġlr − (∂tglr )Ẋt = 0.

This completes the proof of the proposition. �

We now know that Gr, Frs and �rst commute with the variables Xk. As we
now shall see, the formula

Ẍr = Gr + FrsẊs + �rst ẊsẊt

allows us to extract these functions from Ẍr by differentiating with respect to the
dual variables. We already know that

∂̂i ∂̂j Ẍk = 2�kij ,
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and now note that

∂̂i(Ẍr ) = [Xi, Ẍr ] = [Xi,Gr + FrsẊs + �rst ẊsẊt ]

= Frs[Xi, Ẋs] + �rst [Xi, ẊsẊt ]

= Fri + 2�rit Ẋt .

We see now that the decomposition

Ẍr = Gr + FrsẊs + �rst ẊsẊt

of the acceleration is uniquely determined by these conditions. Since

F rs = [Ẋr , Ẋs] = grigsjFij ,

we can regard this result as a description of the motion of the non-commutative
particle influenced by a scalar field Gr, a qauge field F rs, and geodesic motion
with respect to the Levi-Civita connection corresponding to gij . The structural
appearance of all of these physical aspects is a mathematical consequence of the
choice of non-commutative framework.

Remark 4. It follows from the Jacobi identity that

Fij = girgjsF
rs

satisfies the equation

∂iFjk + ∂jFki + ∂kFij = 0,

identifying Fij as a non-commutative analog of a gauge field. Gi is a non-
commutative analog of a scalar field. The derivation in this section generalizes the
Feynman-Dyson derivation of non-commutative electromagnetism Dyson (1990)
where gij = δij . In the next section we will say more about the Feynman-Dyson
result. The results of this section sharpen considerably an approach of Tanimura
(1992). In Tanimura’s paper, normal ordering techniques are used to handle the
algebra. In the derivation given above, we have used straight non-commutative
algebra, just as in the original Feynman-Dyson derivation.

Remark 5. It is interesting to note that we can rewrite the equation

Ẍr = Gr + FrsẊs + �rst ẊsẊt

as

Ẍr = Gr + [Ẋr , Ẋs]Ẋs + �srt ẊsẊt .

(Just substitute the expression for Frs and recollect the terms.) The reader may
enjoy trying her hand at other ways to reorganize this data. It is important to note
that in the first form of the equation, the basic terms Gr , Frs and �rst commute
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with the coordinates Xk. It is this decomposition into parts that commute with
the coordinates that guides the structure of this formula in the non-commutative
context.

ACKNOWLEDGMENTS

Most of this effort was sponsored by the Defense Advanced Research Projects
Agency (DARPA) and Air Force Research Laboratory, Air Force Materiel Com-
mand, USAF, under agreement F30602-01-2-05022. The U.S. Government is
authorized to reproduce and distribute reprints for Government purposes notwith-
standing any copyright annotations thereon. The views and conclusions contained
herein are those of the authors and should not be interpreted as necessarily repre-
senting the official policies or endorsements, either expressed or implied, of the
Defense Advanced Research Projects Agency, the Air Force Research Laboratory,
or the U.S. Government. (Copyright 2005.) It gives the author great pleasure to
acknowledge support from NSF Grant DMS-0245588 and to thank Pierre Noyes
and Keith Bowden for continuing conversations related to the contents of this
paper.

REFERENCES

Dyson, F. J. (1990). Feynman’s proof of the Maxwell Equations. American Journal of Physics 58(3),
209–211.

Connes, A. (1990). Non-commutative Geometry. Academic Press.
Dimakis, A. and Müller-Hoissen, F. (1992) Quantum mechanics on a lattice and q-deformations.

Physical Letters 295B, 242.
Forgy, E. A. (2002). Differential geometry in computational electromagnetics, PhD Thesis, UIUC.
Hughes, R. J. (1992). On Feynman’s proof of the Maxwell Equations. American Journal of Physics

60(4), 301–306.
Kauffman, L. H. (2001, 3rd Edition). Knots and Physics, World Scientific Publication.
Kauffman, L. H. and Noyes, H. P. (1996a). Discrete Physics and the Derivation of Electromagnetism

from the formalism of Quantum Mechanics. Proceedings of the Royal Society of London A 452,
81–95.

Kauffman, L. H. and Noyes, H. P. (1996b). Discrete Physics and the Dirac Equation. Physics Letters
A 218, 139–146.

Kauffman, L. H. and Noyes, H. P. (In preparation)
Kauffman, L. H. (1996). Quantum electrodynamic birdtracks. Twistor Newsletter Number 41.
Kauffman, L. H. (1998a). Noncommutativity and discrete physics. Physica D 120, 125–138.
Kauffman, L. H. (1998b). Space and time in discrete physics. Int. J. Gen. Syst. 27(1-3), 241–273.
Kauffman, L. H. (1999). A non-commutative approach to discrete physics, in Aspects II - Proceedings

of ANPA 20, 215–238.
Kauffman, L. H. (2003). Non-commutative calculus and discrete physics, in Boundaries- Scientific

Aspects of ANPA 24, 73–128.
Kauffman, L. H. (2004). Non-commutative worlds, New Journal of Physics 6, 2–46.



1470 Kauffman

Montesinos, M. and Perez-Lorenzana, A. (1999). Minimal coupling and Feynman’s proof. Interna-
tional Journal of Theoretical Physics 38, 901–910. arXiv:quant-phy/9810088 v2 17 Sep 1999.

Müller-Hoissen, F. (1998). Introduction to non-commutative geometry of commutative algebras and
applications in physics, in Proceedings of the 2nd Mexican School on Gravitation and Mathemat-
ical Physics, Kostanz (1998) <http://kaluza.physik.uni-konstanz.de/2MS/mh/mh.html>.

Tanimura, S. (1992). Relativistic generalization and extension to the non-Abelian gauge theory of
Feynman’s proof of the Maxwell equations, Annals of Physics 220, 229–247.


